
Amplifier Transistors

PNP Silicon

http://onsemi.com

CASE 29 TO-92 STYLE 17

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC556 BC557 BC558	VCEO	-65 -45 -30	Vdc
Collector-Base Voltage BC556 BC557 BC558	V _{СВО}	-80 -50 -30	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous – Peak	I _C	-100 -200	mAdc
Base Current – Peak	I _{BM}	-200	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	1.5 12	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	–55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	200	°C/W
Thermal Resistance, Junction to Case	$R_{ heta JC}$	83.3	°C/W

ORDERING INFORMATION

Device	Package	Shipping	
BC556B	TO-92	5000 Units/Box	
BC556BRL1	TO-92	2000/Tape & Reel	
BC556BZL1	TO-92	2000/Ammo Pack	
BC557	TO-92	5000 Units/Box	
BC557ZL1	TO-92	2000/Ammo Pack	
BC557A	TO-92	5000 Units/Box	
BC557AZL1	TO-92	2000/Ammo Pack	
BC557B	TO-92	5000 Units/Box	
BC557BRL1	TO-92	2000/Tape & Reel	
BC557BZL1	TO-92	2000/Ammo Pack	
BC557C	TO-92	5000 Units/Box	
BC557CZL1	TO-92	2000/Ammo Pack	
BC558B	TO-92	5000 Units/Box	
BC558BRL	TO-92	2000/Tape & Reel	
BC558BRL1	TO-92	2000/Tape & Reel	
BC558BZL1	TO-92	2000/Ammo Pack	
BC558C	TO-92	5000 Units/Box	
BC558CRL1	TO-92	2000/Tape & Reel	
BC558ZL1	TO-92	2000/Ammo Pack	
BC558CZL1	TO-92	2000/Ammo Pack	

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage		V(BR)CEO				V
$(I_C = -2.0 \text{ mAdc}, I_B = 0)$	BC556		-65	_	-	
	BC557		-4 5	_	_	
	BC558		-30	_	_	
Collector-Base Breakdown Voltage		V(BR)CBO				V
$(I_C = -100 \mu\text{Adc})$	BC556	(511)050	-80	_	_	
	BC557		-50	_	_	
	BC558		-30	_	_	
Emitter-Base Breakdown Voltage		V(BR)EBO				V
$(I_F = -100 \mu Adc, I_C = 0)$	BC556	(511)250	-5.0	_	_	
	BC557		-5.0	_	-	
	BC558		-5.0	_	-	
Collector–Emitter Leakage Current		ICES				
(VCFS = -40 V)	BC556	020	_	-2.0	-100	nA
(VCES = -20 V)	BC557		_	-2.0	-100	
	BC558		-	-2.0	-100	
$(V_{CES} = -20 \text{ V}, T_A = 125^{\circ}\text{C})$	BC556		_	_	-4.0	μΑ
	BC557		-	_	-4.0	
	BC558		_	_	-4.0	

$\textbf{ELECTRICAL CHARACTERISTICS} \ (T_{\mbox{\scriptsize A}} = 25^{\circ}\mbox{C unless otherwise noted})$

Characteristic		Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS						
DC Current Gain		hFE				_
$(I_C = -10 \mu\text{Adc}, V_{CE} = -5.0 \text{V})$	A Series Device	'-	_	90	_	
, ,	B Series Devices		_	150	_	
	C Series Devices		_	270	_	
$(I_C = -2.0 \text{ mAdc}, V_{CF} = -5.0 \text{ V})$	BC557		120	_	800	
, <u> </u>	A Series Device		120	170	220	
	B Series Devices		180	290	460	
	C Series Devices		420	500	800	
$(I_C = -100 \text{ mAdc}, V_{CE} = -5.0 \text{ V})$	A Series Device		_	120	_	
3 2	B Series Devices		_	180	_	
	C Series Devices		-	300	_	
Collector–Emitter Saturation Voltage		VCE(sat)				V
$(I_C = -10 \text{ mAdc}, I_B = -0.5 \text{ mAdc})$		0 = (0 0 0 0)	_	-0.075	-0.3	
$(I_C = -10 \text{ mAdc}, I_B = \text{see Note 1})$			_	-0.3	-0.6	
$(I_C = -100 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$			_	-0.25	-0.65	
Base–Emitter Saturation Voltage		V _{BE(sat)}				V
$(I_C = -10 \text{ mAdc}, I_B = -0.5 \text{ mAdc})$		(==,	_	-0.7	_	
$(I_C = -100 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$			-	-1.0	-	
Base–Emitter On Voltage		VBE(on)				V
$(I_C = -2.0 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc})$		(- /	-0.55	-0.62	-0.7	
$(I_C = -10 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc})$			-	-0.7	-0.82	
SMALL-SIGNAL CHARACTERISTICS						
Current-Gain - Bandwidth Product		fT				MHz
$(I_C = -10 \text{ mA}, V_{CE} = -5.0 \text{ V}, f = 100 \text{ MHz})$	BC556		_	280	_	
	BC557		_	320	_	
	BC558		-	360	-	
Output Capacitance		C _{ob}	-	3.0	6.0	рF
$(V_{CB} = -10 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz})$						
Noise Figure		NF				dB
$(I_C = -0.2 \text{ mAdc}, V_{CE} = -5.0 \text{ V},$	BC556		-	2.0	10	
$R_S = 2.0 \text{ k}\Omega$, $f = 1.0 \text{ kHz}$, $\Delta f = 200 \text{ Hz}$)	BC557		-	2.0	10	
	BC558		-	2.0	10	
Small-Signal Current Gain		h _{fe}				_
$(I_C = -2.0 \text{ mAdc}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz})$	BC557		125	-	900	
	A Series Device		125	-	260	
	B Series Devices		240	-	500	
	C Series Devices		450		900	

BC557/BC558

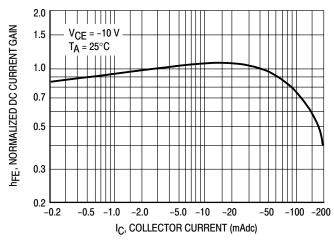


Figure 1. Normalized DC Current Gain

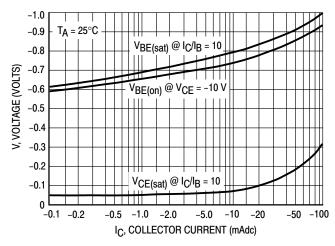


Figure 2. "Saturation" and "On" Voltages

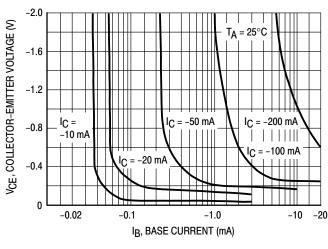


Figure 3. Collector Saturation Region

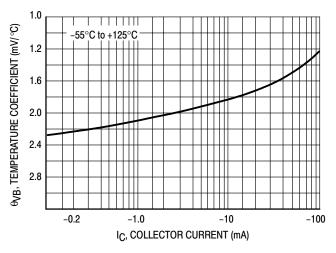


Figure 4. Base-Emitter Temperature Coefficient

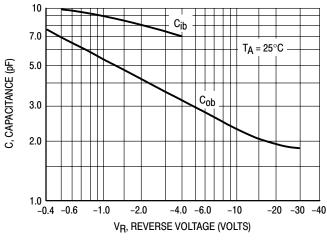


Figure 5. Capacitances

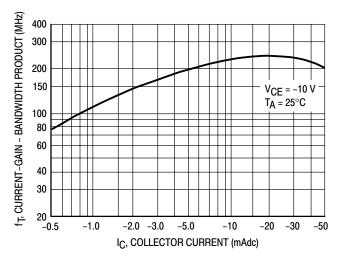


Figure 6. Current-Gain - Bandwidth Product

BC556

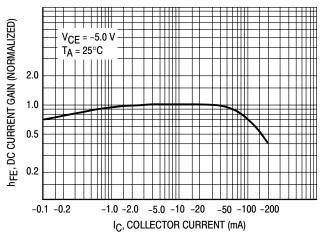


Figure 7. DC Current Gain

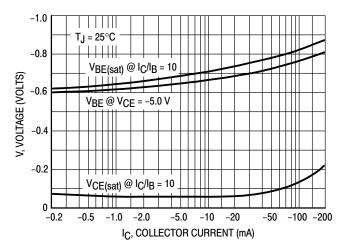


Figure 8. "On" Voltage

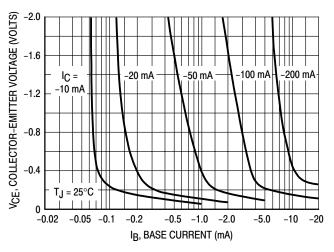


Figure 9. Collector Saturation Region

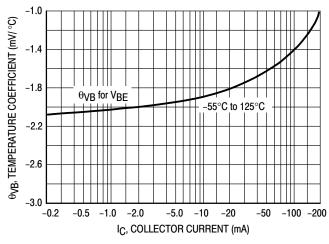


Figure 10. Base-Emitter Temperature Coefficient

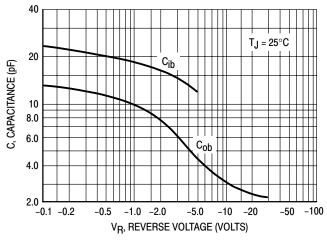


Figure 11. Capacitance

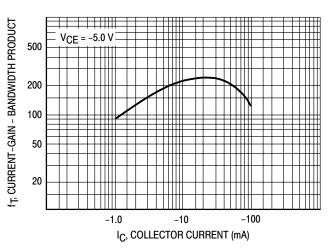


Figure 12. Current-Gain - Bandwidth Product

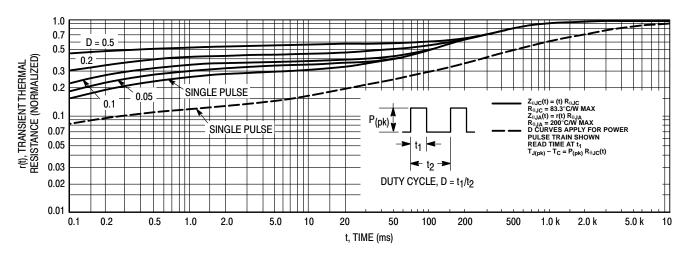
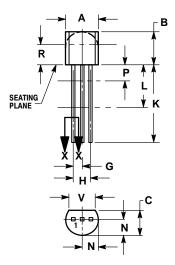


Figure 13. Thermal Response




Figure 14. Active Region – Safe Operating Area

The safe operating area curves indicate I_C–V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

PACKAGE DIMENSIONS

TO-92 (TO-226) CASE 29-11 **ISSUE AL**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.
 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
v	0 135		3 43	

- STYLE 17:
 PIN 1. COLLECTOR
 2. BASE
 3. EMITTER

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.